Additional Inputs:Soil Layer Input File

From Gsshawiki
Jump to: navigation, search

The soil layer input file can be specified by inserting the SOIL_LAYER_INPUT_FILE card in the project file and providing the name of the file that contains the soil layer table. The soil layer input file is used to assign parameter values for use with the three-layer Green and Ampt model (INF_LAYERED_SOIL) and can be used to assign parameters for the Richards’ equation with long-term simulations. The SOIL_LAYER_INPUT_FILE, as described in Section 7.3, must be used to provide inputs for the three layers Green and Ampt model (INF_LAYERED_SOIL). The soil layer input file can also be used to create a condensed form of the information that is provided when the Mapping Table file is used to assign parameter values for the Richards’ equation (INF_RICHARDS). It is useful for automated calibrations when the input files must be repeatedly written out for multiple simulations. The format is not supported by WMS, so the table must be constructed with other software outside of WMS and the project file annotated. An index map must be specified with the SOIL_TYPE_MAP project card. This card names a GRASS ASCII map with integer values related to the IDs in the SOIL_LAYER_INPUT_FILE table. For use with RE, the file has the following two formats depending on whether the RICHARD_C_OPTION is BROOKS or HAVERCAMP.

  • # Soils in the table (N)
  • Maximum number of cells of any soil in table
  • For each Soils from 1 to N:
  • Soil ID#  albedo   vegetation ht (m)    transmission coefficient    canopy resistance (m/s)
  • Then for RICHARDS_C_OPTION HAVERCAMP:
Ks11 θs11 θr11 θi11 θWP11 d11 Α11 Β11 A11 B11 Δz11
Ks12 θs12 θr12 θi12 θWP12 d12 Α12 Β12 A12 B12 Δz12
Ks13 θs13 θr13 θi13 θWP13 d13 Α13 Β13 A13 B13 Δz13
where:
Ks - saturated hydraulic conductivity (cm/hr),
θs - porosity (m3/m3),
θr - residual saturation (m3/m3),
θi - initial water content (m3/m3),
θWP - wilting point water content (m3/m3),
d - depth of layer (cm).
Α and Β - Parameters used to fit water content/head curve,
A and B - parameters used to fit hydraulic conductivity/head curve,
Δz - vertical increment space step (cm).

The subscripts refer to the soil number and layer number, respectively, so that Ks12 is the hydraulic conductivity of soil 1 layer 2.

  • For RICHARDS_C_OPTION BROOKS:
Ks11 θs11 θr11 θi11 θWP11 d11 λ11 ψb11 Δz11
Ks12 θs12 θr12 θi12 θWP12 d12 λ12 ψb12 Δz12
Ks13 θs13 θr13 θi13 θWP13 d13 λ13 ψb13 Δz13
where: λ is the pore distribution index (dimensionless), and ψb – bubbling pressure (cm) (ψb values MUST be negative).

Example Data Set for Sand: 1 Soil with uniform layers, 70 cm deep, Brooks and Corey parameters, 1.0 cm vertical discretization for all layers. For the ET parameters: land surface albedo - 0.1, vegetation height - 0.2 m, transmission coefficient - 0.8, and canopy resistance – 100 m/s.

1
70
1  0.1  0.2  0.8  100.0
   34.16    0.287   0.000  0.100  0.08   5.0  0.84  -19.60  1.0
   34.16    0.287   0.000  0.100  0.08  35.0  0.84  -19.60  1.0
   34.16    0.287   0.000  0.100  0.08  30.0  0.84  -19.60  1.0

Example Data - Same Soil, Havercamp Parameters, same ET variables

1
70
1 0.1  0.2  0.8  100.0
34.00  0.287   0.075  0.100 0.075   5.0   35.5  3.96   1175000 4.74 1.0
34.00  0.287   0.075  0.100 0.075  35.0   35.5  3.96   1175000 4.74 1.0
34.00  0.287   0.075  0.100 0.075  30.0   35.5  3.96   1175000 4.74 1.0 

Example Data Set - 7 soils with varying layer properties, each 1 meter deep, Brooks and Corey parameters, 7 different ET parameter sets

7
100
1   0.1  0.2  0.8  100.0
   34.16    0.287   0.000  0.100   0.08    10.0  0.84  -19.60  1.0
   34.16    0.287   0.000  0.100   0.08    40.0  0.84  -19.60  1.0
   34.16    0.287   0.000  0.100   0.08    50.0  0.84  -19.60  1.0
2  0.2  0.2  0.8   100.0
    0.0428  0.495   0.055  0.4950  0.055    1.0  0.25  -18.1   1.0
    0.0428  0.495   0.055  0.2376  0.055   49.0  0.25  -18.1   1.0
    0.0428  0.495   0.055  0.2376  0.055   50.0  0.25  -18.1   1.0
3  0.2  0.1  0.6  100.0
    3.9000  0.420   0.130  0.200   0.13    10.0  0.51  -141    1.0
    3.9000  0.420   0.130  0.200   0.13    40.0  0.51  -141    1.0   
    3.9000  0.420   0.130  0.200   0.13    50.0  0.51  -141    1.0
4  0.1  0.2  0.6  150.0
    0.0428  0.495   0.055  0.495   0.055    1.0  0.25  -18.1   1.0
    0.0428  0.495   0.055  0.2376  0.055    4.0  0.25  -18.1   1.0   
    3.9000  0.420   0.130  0.200   0.13    50.0  0.51  -141    1.0
5  0.15  0.2  0.4  25.0
    0.0428  0.495   0.055  0.495   0.055    1.0  0.25  -18.1   1.0
    0.0428  0.495   0.055  0.2376  0.055    4.0  0.25  -18.1   1.0
   34.16    0.287   0.000  0.100   0.08    50.0  0.84  -19.60  1.0
6  0.17  0.25  0.15  200.0
   34.16    0.287   0.000  0.100   0.08    45.0  0.84  -19.60  1.0
    0.0428  0.495   0.055  0.2376  0.055   10.0  0.25  -18.1   1.0
   34.16    0.287   0.000  0.100   0.08    45.0  0.84  -19.60  1.0
7  0.22  0.3  0.25  75.0
    0.0428  0.495   0.055  0.4     0.055    5.0  0.25  -18.1   1.0
   34.16    0.287   0.000  0.100   0.08    90.0  0.84  -19.60  1.0
    0.0428  0.495   0.055  0.4     0.055    5.0  0.25  -18.1   1.0

GSSHA User's Manual

13 Additional Inputs
13.1     Spatially and Temporally Varied Precipitation
13.2     Soil Layer Input File
13.3     Static Pumping Wells
13.4     Hydrometeorological Input File